Generalized Einstein Operator Generating Functions

نویسنده

  • D. Cherney
چکیده

We present gauge invariant, self adjoint Einstein operators for mixed symmetry higher spin theories. The result applies to multi-forms, multi-symmetric forms and mixed antisymmetric and symmetric multiforms. It also yields explicit action principles for these theories in terms of their minimal covariant field content. For known cases, these actions imply the mixed symmetry equations of motion of Labastida. The result is based on a calculus for handling normal ordered operator expressions built from quantum generators of the underlying constraint algebras. The dynamics of higher spin fields is described by the equation of motion ( ∆−QQi + 1 2 QQtrji } {{ } G ) Ψ = 0 = tri(jtrkm]Ψ , (1) which enjoys the gauge invariance

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Class of Extended Fractional Derivative Operators and Associated Generating Relations Involving Hypergeometric Functions

Recently, an extended operator of fractional derivative related to a generalized Beta function was used in order to obtain some generating relations involving the extended hypergeometric functions [1]. The main object of this paper is to present a further generalization of the extended fractional derivative operator and apply the generalized extended fractional derivative operator to derive lin...

متن کامل

Recurrence Relations for Moment Generating Functions of Generalized Order Statistics Based on Doubly Truncated Class of Distributions

In this paper, we derived recurrence relations for joint moment generating functions of nonadjacent generalized order statistics (GOS) of random samples drawn from doubly truncated class of continuous distributions. Recurrence relations for joint moments of nonadjacent GOS (ordinary order statistics (OOS) and k-upper records (k-RVs) as special cases) are obtained. Single and product moment gene...

متن کامل

(DELTA,GAMMA, 2)-BESSEL LIPSCHITZ FUNCTIONS IN THE SPACE L_{2,ALPHA}(R+)

Using a generalized translation operator, we obtain a generalization of Theorem 5 in [4] for the Bessel transform for functions satisfying the (delta;gamma ; 2)-BesselLipschitz condition in L_{2;alpha}(R+).  

متن کامل

On composition of generating functions

In this work we study numbers and polynomials generated by two type of composition of generating functions and get their explicit formulae. Furthermore we state an improvementof the composita formulae's given in [6] and [3], using the new composita formula's we construct a variety of combinatorics identities. This study go alone to dene new family of generalized Bernoulli polynomials which incl...

متن کامل

GENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM

In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009